科学研究費助成事業

研究成果報告書

平成 27 年 6 月 2 0 日現在 機関番号: 32201 研究種目: 基盤研究(C) 研究期間: 2012~2014 課題番号: 24560343 研究課題名(和文)小型強力磁石の実用化を目指した着磁簡略化の検討 研究課題名(英文)Simplification of magnetization aiming at practical use of a small-size strong magnet 研究代表者 横山 和哉 (Yokoyama, Kazuya) 足利工業大学・工学部・准教授 研究者番号:60313558 交付決定額(研究期間全体):(直接経費) 3,200,000円

研究成果の概要(和文):大型・高特性の超伝導バルク体において,パルス磁化法により大きな磁場を効率的に捕捉させるために,試料に細孔を加工する手法を考案した。その着磁特性を評価するため,磁束密度及び温度のリアルタイム 測定システムを構築し,細孔の大きさや個数の異なる試料において,温度と印加磁場の大きさを変えたパルス着磁実験 を行った。高点、荷や磁束密度等の時間応答を転したすすが、細孔の大きさや数が磁場の捕捉に及ぼす影響を明らか にした。さらに,詳細な磁束の挙動を把握することにも成功した。

研究成果の概要(英文):We proposed a hole-processed bulk superconductor to trap the magnetic field efficiently in a large-size and high-performance material excited by pulsed field magnetization. To evaluate the magnetizing performance of the bulk material, a real-time measurement system of magnetic flux density and temperature was constructed, and an experiment in which a single pulsed field was applied with changing amplitude of the magnetic field and temperature was carried out using GdBCO bulks with a 1-mm-diameter hole, a 2-mm-diameter hole and four 2-mm-diameter holes. When investigating magnetic field distributions and time responses of magnetic flux density and temperature, we obtained a suggestion that about 1 mm in diameter was proper for the hole size and clarified that a solder filled in small holes inhibited an decrease in magnetic flux by improving a cooling effect. Moreover, we also succeeded to comprehend the detailed behavior of the magnetic flux such as flux jumps.

研究分野: 電気電子工学

キーワード: 超伝導バルク体 パルス着磁 捕捉磁場 リアルタイム測定システム

1. 研究開始当初の背景

近年の資源・環境問題において、レアアー スの回収や水質浄化等へ、磁気の活用が期待 されている。また除染された土壌から放射性 物質を分離・回収することにより、中間貯蔵 設備に保管する物質の減容化への応用も提 案されている。さらに、医療分野では磁気に よる薬剤の誘導等、安全かつ効果的な投薬技 術への応用も検討されている。

高温酸化物超伝導バルク体(以下,バルク 体と略す)を用いた磁石装置は,試料を冷 却・磁化した後,冷凍機等で冷却し続けるこ とにより疑似的な永久磁石として使用する ことができる。従来の永久磁石や電磁石の限 界である2テスラを超える磁場を容易に発生 することができ,装置が小型・安価かつ低ラ ンニングコスト等のメリットがある。近年の 超伝導材料の大型化や高特性化に伴い,磁化 されれば大きな磁力を発生できるものの,磁 化の過程が難しくなる傾向にあり,バルク磁 石装置の実用化には強磁場化と共に磁化の 容易さが重要な課題となっている。

2. 研究の目的

本研究は大型・高特性バルク体において, パルス磁化法により大きな磁場を効率的に 捕捉させること目的とする。バルク体の磁化 法は磁場中冷却法とパルス磁化法に大別で き,前者は試料の性能限界まで磁化できるも のの、大型の超伝導マグネットが必要であり、 また励磁時間が長いデメリットもある。後者 は汎用のコンデンサバンクや銅コイルで励 磁でき、短時間で磁化できるため、産業応用 に向けては後者が有利であると考える。これ まで捕捉磁場が性能限界の半分程度である ことが問題であったが、複数回パルス磁場を 印加する方法や温度を調整する手法などが 提案され、捕捉磁場が改善されてきた。しか し、近年の材料の高性能化に伴い、上記の方 法でも大きな磁場を捕捉させることが難し くなってきた。そこで、試料の一部に機械的 に細孔を加工することで意図的に超伝導特 性の低い部分を作り, そこから選択的に磁場 を侵入させる方法を考案した。本申請研究で は、細孔を加工した試料における磁束密度等 の実測データから磁束の挙動を把握し、着磁 のメカニズムを明らかにする。さらに、細孔 が着磁特性に及ぼす影響を明らかにする。

3. 研究の方法

(1) 超伝導バルク体

REBa₂Cu₃O_x超伝導バルク体 (RE=Y, Gd 等の軽 希土類)は、超伝導相である REBa₂Cu₃O_x (RE123 相)に非超伝導相である RE₂BaCuO₅ (RE211 相) を添加し、種結晶を用いて結晶成長させるこ とで作製される。この時、不純物である RE211 相が押し出されて結晶成長境界 (Growth Sector Boundary, GSB)が形成される。一方, GSB に囲まれた部分は結晶成長領域 (Growth Sector Region, GSR) と呼ばれる。RE211 相 は磁束を捕捉するピン止め点であるため GSB は GSR に比べて超伝導特性が高い。そこで、 本研究では着磁後の捕捉磁場の向上を重視 して、GSB には加工を加えず、GSR に細孔を 加工することとした。当初、磁束を内部まで 侵入させることを目的として、図1(a)に示す ように半径の半分程度の位置まで直径 2 mm の細孔を4個加工した。しかし、磁場分布が 歪んでしまったり、捕捉磁場が低下してしま ったりする問題があった。本研究では、細孔 の大きさや個数を検討するため、加工前の試 料で捕捉磁場特性を測定した後、直径 1 mm の細孔を試料の厚みの半分程度加工した場 合、その穴を貫通させた場合、さらに直径 2 mm に拡大した場合について実験を行った。

(a)細孔φ2mm×4個
 (b)細孔φ1mm×1個
 図1 細孔加工した超伝導バルク体

(2)磁束密度及び温度のリアルタイム測定シ ステム

着磁中の磁束の挙動を把握するため、 試料 表面における磁束密度及び温度をリアルタ イムで測定するシステムを構築した。従来は 7回/sのサンプリングレートであったが,印 加するパルス磁場の立ち上がり時間が 10 ms であるため、有用なデータを得ることが難し かった。本研究ではサンプリングレートが 100 us 以上のデータロガー (PA-S1000/8, (株)P&A テクノロジーズ)を用いて複数点を 測定できるシステムを構築した。そして、ホ ールセンサ(極低温用, BHT-921, F.W. BELL) により磁束密度の時間変化を測定するとと もに, T 型熱電対 (線径 76 μm, テフロン被 覆, 自作)を接続することで温度も測定する。 図2に各センサのセットアップを示す。ホー ルセンサはカプトンテープ,熱電対はワニス を用いて試料表面に貼り付けた。

(a)磁場センサのセットアップ (b)温度センサのセットアップ 図2 リアルタイム測定システム

(3)実験方法

図3に実験装置の概略を示す。バルク体を 2段GMサイクル冷凍機(RF273SA,アイシン 精機製)の2ndステージに接続した銅ロッド の先端のサンプルフォルダに取り付け、断熱 シートで覆い、さらに真空チャンバを取り付 ける。その後、温度コントローラで20~50 K に調整しながら試料を冷却する。次に磁極の 先端に着磁コイルを取り付け、各温度におい て 3.1~7.0 T のパルス磁場(立ち上がり時 間:10 ms)を各1回印加する。その際、磁 場印加時の試料表面における磁束密度及び 温度の時間変化を測定する。着磁コイルを取 り外した後、磁極表面(試料からの距離:4 mm) の磁束密度分布を測定した。なお、細孔加工 前に上記の条件で実験を行っており、加工前 後の結果を比較した。

図3 超伝導バルク磁石装置の概略

4. 研究成果

(1)磁束密度分布の比較

図4に20Kにおける(a)加工前,(b) φ1mm の細孔が1個(貫通), (c) φ2 mmの細孔が1 個, (d) φ 2 mm の細孔が 4 個の場合の磁束密 度分布を示す。各図の左上の数字は印加磁場 の大きさである。3.9 T の弱い磁場では、加 工前はほとんど磁場が侵入していないが、細 孔を加工することによりその部分から磁束 が侵入していることがわかる。また、細孔が 4 個の場合は磁場を捕捉している部分が広く なっている。印加磁場が 5.4 T の場合は(a) ~(c)で磁場を強く捕捉している赤色の面積 が広くなっている。一方, (d)では細孔加工 した部分で分布が歪んでおり,磁束が抜け出 たことが考えられる。印加磁場7.0Tでは(a) に比べて(b)及び(c)の磁場を強く捕捉して いる部分が減少している。(d)では磁場分布 が歪んでおり、磁場の強い部分はさらに小さ くなっている。以上の結果,細孔を1個とす ることにより,磁場分布の歪みがなくなるこ とを確認した。

(2)総磁束量の比較

図 5 に 20~50 K における印加磁場と総磁 束量の関係を示す。なお,総磁束量(ϕ)の値 は図 4 の磁束密度分布から算出した。20 K で は印加磁場と共に ϕ が大きくなり,5.4 T で 最大となっている。 ϕ の最大値は加工前に比 べて加工後は小さくなっているが,細孔1個 の場合は直径による違いはない。一方,細孔 が 4 個の場合, ϕ は小さな値となっている。 30 K では,細孔が1 個の場合,4.6 T で最大

値を取り、その後減少している。また、細孔 4個の場合もほぼ同じ値となっている。40及 び50Kの場合、 ϕ_2 mmの細孔が1個の場合 と4個の場合でほぼ同じ値となっている。こ こで、20Kにおいて印加磁場 6.2Tで総磁束 量が小さくなっているが、これはフラックス ジャンプによるものであり、後述する磁束密 度の時間応答の結果でも確認している。総磁 束量の結果から、細孔は ϕ_2 mmでは大きすぎ るという知見が得られた。

(3)磁束密度の時間変化

図 6 に(a)細孔 ϕ 1 mm 及び(b)細孔 ϕ 2 mm の場合の試料表面における磁束密度の時間 変化を示す。印加磁場 3.9 T の場合, (a)に おいては H1 の値が大きくなっており, 試料

端部にのみ磁束が捕捉されている。一方(b) では H2 の値も大きく、細孔が大きくなった ことで、より内部まで磁束が侵入しているこ とがわかる。印加磁場 5.4 T では H4 の値が 大きくなり、磁束が中心部分まで侵入してい る。また、50 ms 付近で H3 の値が急激に低下

しており、フラックスジャンプが発生したこ とがわかる。ただし、細孔部分からは離れて いることから細孔加工とは関係ないと考え られる。印加磁場 6.2 T では H3 の減少が顕 著になっており、特に細孔 φ2 mm では H1 及 び H2 の値も大きく減少し、H1 はほぼ 0 にな っている。このように試料表面の磁束密度の 時間変化を詳細に測定することにより、磁束 の動きを把握することができた。

(4)細孔部分の磁束密度の変化の比較

図 5 の印加磁場 6.2 T の H1 及び H2 の結果 において、磁束密度が減少してから再び増加 していることが確認された。これは 30~50 K の温度や別の試料でも確認している。図 6 に 細孔 ϕ 2 mm×4 個の試料における (a) 印加磁場 5.4 T, (b) 6.2 T, (c) 7.0 T の時の H1 及び H2 の磁束密度 (B_z)の時間変化を示す。いず れの結果も、磁場印加後、 B_z が一旦減少した 後に再び増加している。これは、磁場侵入時 のピンニング損失に伴う発熱で J_c が低下し、 磁束フローが発生したことを示している。そ の後、試料が冷却されて J_c が改善されると、 磁束フローが止まり、再び磁束が捕捉される ため B_が増加する。H1 ではいずれの印加磁場 においても B,が0まで減少しており,一度す べての磁束が抜け出ていることがわかる。一 方, (a)のH2では,温度が低いほど B_の減少 が時間的に早く止まり,更に B₂の最小値が大 きいことがわかる。これは、ハンダにより試 料が冷却され、J。が早く回復することを示唆 している。(b)及び(c)においても同じ傾向が みられるが、印加磁場が大きいほど B.の最小 値は小さくなっている。これは、印加磁場の 増加に伴い発熱が大きくなり、冷却されるま で時間がかかることが原因であると考えら れる。このように、磁場印加後の磁束フロー を抑制する効果があることを明らかにした。

(5)細孔に充填したハンダの冷却効果の検証 前節の磁束フロー抑制効果を詳細に検討 するため,熱電対を貼り付けて温度の時間変 化を測定した。図8にハンダがある場合とな い場合の(a)印加磁場 5.4 T, (b) 6.2 T, (c) 7.0 T における細孔部分の温度上昇の比較を示す。 いずれの場合も磁束侵入時のピンニング損

失に伴う温度上昇は、ハンダありの方が最大 値が小さいことがわかる。これは図7の結果 と一致しており,ハンダによる冷却効果が確 認された。

(6)まとめ

本研究は細孔加工した超伝導バルク体の 着磁特性を評価するため、磁束密度及び温度 のリアルタイム測定システムを構築し、細孔 の数や大きさの異なる試料でパルス着磁実 mm では捕捉磁場が低下することや、ハンダ により磁束フローが抑制されることを明ら かにした。今後これらの成果を基に、着磁の 効率化及び捕捉磁場の更なる向上を目指し, バルク磁石の実用化につなげたい。

5. 主な発表論文等

〔雑誌論文〕(計5件)

- ① K. Yokoyama, R. Igarashi, R. Togasaki, T. Oka, "Pulsed field magnetization characteristics of a holed superconducting bulk magnet", Physica C, 査読有, 2015, accepted.
- ② K. Yokoyama, R. Igarashi, R. Togasaki, T. Oka, "Improvement of the trapped performance of a holed field superconducting bulk magnet," IEEE Transactions on Applied Superconductivity, 査読有, Vol. 25, 2015, Art. No. 6800804

DOI: 10.1109/TASC.2014.2370792

- ③ K. Yokoyama, T. Tsukui, H. Mita, N. Tsubonoya, T. Oka, "Investigation of the Flux Flow-inhibiting Effect of a Hole-opened Superconducting Bulk Magnet," Physics Procedia, 査読有, Vol. 58, 2014, pp. 302-305 DOI:10.1016/j.phpro.2014.09.075
- ④ <u>K. Yokoyama,</u> T. Tsukui, H. Mita, N. T. 0<u>ka</u>, "Experimental Tsubonoya, Verification of the Magnetic Flux Penetration Property and a Flux Flow Inhibition Effect of a Superconducting Bulk Magnet with Small Holes", Physics Procedia, 査読有, Vol. 45, 2013, pp. 261 - 264

doi:10.1016/j.phpro.2013.05.017

(5) K. Yokoyama, T. Oka, N. Kondo, S. Hosaka, "Pulsed-field magnetization of a bulk superconductor with small holes", Physica C, 査読有, Vol. 484, 2013, pp. 343-347 DOI:10.1016/j.physc.2012.03.074

[学会発表] (計 20 件)

① ムハンディラム エランダ,安藤正亮,横山 和哉,「細孔バルク体のパルス着磁特性の評 価」,第5回 電気学会東京支部 栃木·群馬 合同研究発表会, ETT-15-75 支所 /ETG-15-75, 宇都宮大学, 2015.3

- (2) <u>K. Yokoyama</u>, R. Igarashi, T. Togasaki, <u>T. Oka</u>, "Pulsed Field Magnetization Characteristics of a Holed Superconducting Bulk Magnet", 27th International Symposium on Superconductivity (ISS2014), SAP-73, Tokyo, Japan, 2014.11
- ③ 戸ヶ崎亮介,五十嵐僚太,<u>岡 徹雄</u>,<u>横山</u> <u>和哉</u>,「細孔バルク体の細孔のサイズとパ ルス着磁特性の関係」,2014 年秋季低温工 学・超電導学会,1C-p11,こらっせ福島, 2014.11
- ④ 五十嵐僚太、戸ヶ崎亮介、<u>岡 徹雄</u>、<u>横山和</u> <u>哉</u>、「温度測定による細孔バルク体の冷却効 果の評価」、2014 年秋季低温工学・超電導学 会、1C-p10、こらっせ福島、2014.11
- (5) <u>K. Yokoyama</u>, R. Igarashi, R. Togasaki, <u>T. Oka</u>, "Improvement of the trapped field performance of a holed superconducting bulk magnet", Applied Superconductivity Conference (ASC2014), 3LPo1L-03, Charlotte NC, USA, 2014.8
- ⑥ 五十嵐僚太、戸ヶ崎亮介、<u>岡 徹雄</u>、<u>横山和</u> <u>哉</u>,「細孔ありバルク体の冷却効果の検証」, 平成 26 年電気学会産業応用部門大会(東京 大会),Y-110,東京電機大学,2014.8
- ⑦ 戸ヶ崎亮介,五十嵐僚太,横山和哉, 岡 徹 <u>雄</u>,「1 か所に細孔を加工した超伝導バル ク体のパルス着磁特性」,平成 26 年電気学 会産業応用部門大会(東京大会), Y-111, 東京電機大学, 2014.8
- ⑧ 横山和哉,五十嵐僚太,戸ヶ崎亮介,<u>岡 徹</u> <u>雄</u>,「捕捉磁場特性の改善を目的とした細 孔バルク体の着磁特性の評価」,2014 年春 季低温工学・超電導学会,1B-a05,タワー ホール船堀,2014.5
- ⑨ 津久井友隆,三田裕幸,坪野谷典之,横山和 <u>哉</u>, <u>岡</u> 徹雄,「細孔サイズがバルク体の着磁 特性に及ぼす影響」,平成26年電気学会全国 大会,5-164,愛媛大学,2014.3
- 1) 五十嵐僚太,戸ヶ崎亮介,津久井友隆,<u>横</u>山和哉, 岡 徹雄,「細孔ありバルク体の磁 束フロー抑制現象における冷却効果の影響」,平成26年電気学会全国大会,5-165, 愛媛大学,2014.3
- 津久井友隆,三田裕幸,<u>岡 徹雄</u>,<u>横山和</u> <u>哉</u>,「細孔の大きさによるバルク体への着 磁特性の影響」,2013 年秋季低温工学・超 電導学会,3C-a09,ウィンクあいち(愛知 県産業労働センター),2013.12
- 12 <u>K. Yokoyama</u>, T. Tsukui, H. Mita, N. Tsubonoya, <u>T. Oka</u>, "Investigation of the flux flow inhibiting effect of a hole-opened superconducting bulk magnet", 26th International Symposium on Superconductivity (ISS2013), SAP-104, Tokyo, Japan, 2013.11
- ③ 横山和哉,津久井友隆,三田裕幸,坪野谷典之,<u>岡 徹雄</u>,「細孔ありバルク体のパルス着磁における捕捉磁場特性」,2013 年

春季低温工学・超電導学会, 1P-p14, タワ ーホール船堀, 2013.5

- (1) <u>K. Yokoyama</u>, T. Tsukui, H. Mita, N. Tsubonoya, <u>T. Oka</u>, "Evaluation of the trapped field performance of a hole-opened superconducting bulk magnet", 23rd International Conference on Magnet Technology (MT23), 3PoAP-04, Boston MA, USA, 2013.7
- (5) 横山和哉,津久井友隆,三田裕幸,坪野谷典之,<u>岡 徹雄</u>,「細孔ありバルク体の磁束フロー抑制効果の検証」,平成25年電気学会全国大会,5-163,名古屋大学,2013.3
- (16) 津久井友隆,三田裕幸,坪野谷典之,横山和 <u>哉,圖 徹雄</u>,「細孔あり超伝導バルク体の捕 捉磁場特性の評価」,平成 25 年電気学会全国 大会, 5-164,名古屋大学, 2013.3
- ① 津久井友隆,三田裕幸,坪野谷典之,<u>岡 徹</u> <u>雄,横山和哉</u>,「細孔加工した超伝導バルク 体のパルス着磁における捕捉磁場特性」,第 3回電気学会東京支部栃木・群馬支所合同研 究発表会,ETT-12-89/ETG-12-89,宇都宮大 学,2013.2
- (B) <u>K. Yokoyama, T. Oka</u>, N. Kondo, S. Hosaka, "Experimental verification of the magnetic flux penetration property and a flux flow inhibition effect of a superconducting bulk magnet with small holes", 25th International Symposium on Superconductivity (ISS2012), SAP-75, Tokyo, Japan, 2012. 12
- (1) 津久井友隆,三田裕幸,坪野谷典之,圖 徹 <u>雄</u>,横山和哉,「細孔バルク体の捕捉磁場 特性の評価」,2012年秋季低温工学・超電 導学会,1A-a02,いわて県民情報交流セン ター(アイーナ),2012.11
- (2) <u>K. Yokoyama, T. Oka</u>, N. Kondo, S. Hosaka, "Evaluation of pulsed-field magnetization of a bulk superconductor with small holes", Applied Superconductivity Conference (ASC2012), 2MPN-01, Portland, USA, 2012.10

ホームページ:足利工業大学 工学部 創生工 学科 機械・電気工学系 電気電子コース 応 用超伝導研究室 http://www2.ashitech.ac.jp/elec/yokoyam

a/index. html

6. 研究組織

- (1)研究代表者 横山 和哉(Yokoyama Kazuya)
 足利工業大学・工学部・准教授 研究者番号:60313558
- (3) 連携研究者
 岡 徹雄(0ka Tetsuo)
 新潟大学・工学部・教授
 研究者番号: 40432091

[[]その他]